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Abstract 

We prove that the space of smooth initial data and the space of smooth solutions to the Liouville 
equation are homeomorphic. 0 2000 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The purpose of this paper is to prove the theorem that the space M of smooth, C”(R*), 
solutions to the Liouville equation [ 11: 

(a,’ - 8,2)F(t, X) + g exp F(t, x) = 0, m>O 

with the topology of almost uniform convergence with all derivatives is homeomorphic to 

the space P’ (F-8) x Co3 (R) of smooth initial data. 
The existence of such homeomorphism guarantees the stability of solutions of the Liou- 

ville equation with respect to the perturbation of initial data, i.e., if a series of smooth initial 
data converges almost uniformly with all its derivatives to (fl , f2) E Co3 (W) x Co3 (IF!), then 
the series of corresponding solutions to the Liouville equation converges almost uniformly 
with all its derivatives to the solution corresponding to the initial data (ft , A). 
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The proof of the theorem consists of two parts which are presented in Sections 2 and 
3. In Section 2 we quote some results of Jorjadze et al. [2] concerning the solution of 
the Cauchy problem for the Liouville equation and we prove these results. We present the 
construction of the smooth solution F to the Liouville equation for given initial data. For 
given fi , f2 E C”(W) we introduce the functions U, w E Cc0 (R) defined by (11) and 
(12). Then, we consider the bases of solutions to the linear equations: 81’ = ugi (i = 2,4), 
Eq. (13) and g,;’ = wgj (j = 1,3), Eq. (14). We use gt , g2, g3 and g4 to define the map 

G E Coo@@), Eq. (10). Finally, we get the solution to the Liouville equation in the form 
F := - log[(m2/16)G2], Eq. (15). The main result of Section 2 is Proposition 1 giving 
explicitly the relation between fr , fz E C”(R) and F E M. In Section 3 we introduce 
a few mappings between some subspaces of COC(RM, RN), e.g., the function u given by 
(11) defines the mapping (30) A : C”(R)* 3 (fi, f2) -+ d(fi, f2) := u E C%(R). 
Similarly, we define another mappings: B, C, . . . , Z given by (31), (32), . . ., (38). Next we 
prove that each of these mappings is continuous. The bijection Z : C”(lR)2 3 (fl , f2) -+ 
LL(fl , f2) = F E M is continuous as the composition of continuous maps. The continuity 
of the inverse mapping Z- ’ . M + C”(5Q2 is immediate. This completes the proof. , 

Let us introduce the notation and let us recall some results concerning smooth mappings 
to make the paper self-contained: 

From now on, FV := {0, 1, . . .) and Nx := N \ (0). In RN, where N E NX, we use the 
norm 

c 1 
112 

II+RN3y+IIyII:= &yj)2 ER. 
j=l 

RM = U,“=, K,“, where K, := [-a, a] and CY, M E NX; aB := a!’ . a!? ... a?, 

B:=(B1,82,..., fiM),where/?k E IV(k= 1,2 ,..., M), I B I:= c;"=, Bj.CmO(~M7~N), 

where M, N E N ‘, denotes the space of all smooth mappings RM + RN with the topology 
of almost uniform convergence with all derivatives, i.e., the topology of Cm(lRM, RN) is 
defined by the family of seminorms pr, where 

PffiN : cy@, rtN) 3 f - ptBN(f) := SUP II (aPfw IIE [w, 
XEK,M 

andwherep E N”,a! E N*. 
We say that the sequence (fn)rzO of elements of CCO(lRM, RN) converges to f E C% 

(R”, RN) iff V(a, #?) E NX x NM : limn+.clr py(f - fn) = 0. The space C”((R”, RN) 
is a complete topological vector space, which in particular means that the operation of 
multiplication by a scalar 

. : R x P(lP, UP) 3 (IL, f) + h. f E P(fJP, RN), 

and the operation of vector addition 

+ : r?(@, RN) x COO@, RN) 3 (f, g) -+ f + g E COO(@, RN) 

are continuous. Cffi(lRM, RN) is an example of a Frechet space. 
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In what follows C”(R”) := CCQ(lRM, R); small latin letters denote maps R + R, i.e., 
f, g, h, . . . E Co3 (R); lR2 -+ R maps are denoted by capital latin letters, i.e., F, G, H, . . . E 
Cm(R2);R -+ R2mapsaredenotedbycapitalgreekletters,i.e., @, ly, Q, . . . E C”(W, W*). 

We denote pap := p$, rap := p$, gap := ~2; for /I = (Br, 82); a, = Or, a, = 32, 
0 := a,2 - a,“, for (t, X) E R2. 

There are two subspaces of Cc0 (R2) which are of primary importance in our considera- 
tions: 

C,“(R2) := {F E C”(R2) : F(W2) C]O, oo[} 

and 

M := (F E C”(W2) : OF + (m2/2) exp F = 0), 

where m > 0 is a fixed real number. 
The topologies on C,“(W2) and M are induced topologies from Coo (R2). It means that 

a sequence (F,)rzo of elements from C,“(R2) (or M) converges to F E C,“(W2) (or 
F E M), iff it converges to F in C”(R2). 

In the space of all linear mappings R2 + R2 we use the norm 

II . II: WR2> 3 A +-II A II:= ,,yl II A(x) 11~ R. 
x 

2. Smooth solutious of the Liouville equation 

We examine properties of a smooth solution to the Liouville equation, i.e., of class 
P(O), where R2 2 0 is an open subset different to 0. However, all proofs can be easily 
modified to include the solutions of class Ck(R2), for k z 2. 

Lemma 1. Let gi E C”(W) (i = 1,2,3,4) are such that 

g1g; - g;g3 = 19 g2g: - g;g4 = -1 

and let 

(1) 

G : R2 3 (t, x) + G(t, x) := gl(x + t&2(x - t) + gj(x + t)gd(x - t) E R. 

Then we have 

(G-‘(O) # 0) _ (G-‘(O) n ((0, x) E R2 : x E IR) # 0). 

Proof. Let6 :=x+t, II := x - t. Making use of 

(G(to, xo) = 0) - (a ($o‘o)g2(rlo) = -g3(to)g4(vo)) 

we see that the condition 

G(to, xo) = 0, (&G)(to, x0) = (&G)(to, x0) 

(2) 
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leads to 

gl(6o)g;(t70) + gs(~o)g~(Vo) = 0. 

Multiplying this equation by gz (no) and using (1) gives gs (to) = 0. Similarly, multiplying 
by g4(m) leads to gt (40) = 0. Thus, we have 

G(R), xo) = 0 
(&G)(to> xo> = (&G>(ro, xo> * ($3 (to, x0) = 0 = g3(ro, .x0)), 

contrary to (1). In the same manner we can see that 

G(ro, x01 = 0 
(&WOO, xo) = -(a,G)(ro, xo) 

===+ (g2(ro, x0> = 0 = g4(to, x0)). 

which again contradicts (1). Therefore, we have 

((to. xo) E G-‘(O)) * ((&G)(to> xo) # *(&G)(ro, x0)). 

The condition (a, G) (to, x0) = 0 means that 

(3) 

0 = s; (Co)g2(vo) + gl(6oo)g;h~) + g;(to)g4(90) + gsEok~(rlo). (4) 

Multiplying (4) by gt (co)g4(qo) and using (2) gives 

gl (Co)’ + g4(oo)2 = 0. (5) 

Similarly, multiplying (4) by g3(cu)gT(no) and using (2) leads to 

g3(to)2 + g2(170)2 = 0. (6) 

Since (5) and (6) contradict (l), we conclude that 

((ru, XO) E G-‘(O)) ==+ ((&G)(k XO) # O), (7) 

which means that either G-’ (0) = 0 or G- ’ (0) is a one-dimensional C30 submanifold of 
R2. Suppose that G-t (0) # 0 and let us denote by M the connected component of G-’ (0). 
By (3) we have that M cannot be a compact subset of R2. Since M is closed in R’. it 
cannot be bounded in lR2. From (7) we conclude that M can be parametrized by r E R. Let 
rr : R2 3 (r, x) + n(r, x) := r E 08. Since M is closed, r(M) 2 R is closed in R. Hence 
0 # n(M) G R is both closed and open (homeomorphic to R). Therefore n(M) = Ft. 
Finally, we obtain 

G-‘(O) f? {(0,x) E R2 : x E R] # 0. 0 

By [l] we get the following lemma. 

Lemma 2. Let R2 1 c? be an open subset and ler 

0, := ((x + t) E R : (t, x) E O), C+ := {(x - r) E R : (r, x) E c?]. 

Suppose F E C”(0), then the foElowing are equivalent: 
1. OF = -(m2/2) exp F. 
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2. There exist gl, g3 E C”(Ol) and g2, g4 E P(02) satisfying gig; - gig3 = 1 and 
g2gi - gig4 = -1 such that F : C’ 3 (t, x) + F(t, x) := -log(m2/16)[g,(x + 

t)g2G - t) + g3G + t)g4(x - t)12 E F-8. 

Lemmas 1 and 2 lead to the following corollary. 

Corollary 1. If R2 2 0 is an open set such that {(0, x) E R2 : x E R} s C? and 
F E Coo(o) satisfies the Liouville equation ??IF = -(m2/2) exp F, then there exists 
F E C”(R2) such that Ok = -(m2/2) exp F and ilO = F. 

Proposition 1. Suppose fl , f2, g 1, g2, g3, g4 E P(W) and let 

m; - &T;gs = 1, (8) 

g2‘Y:, - g;g4 = -1, (9) 

G : R2 3 (t,x) + G(t,x) := g1 (x + t)g2(x - t) + g3(x + t)g4(x - t) E R, (10) 

u := $ [<fi - f212 - 4(f; - f2)' + m2 exp fll, (11) 

w := &[(.fi + f212 - 4C.f; + f2)’ + m2 exp fi]. (12) 

Then 
1. If g1,... , g4 satisfy the equations 

gy = Ugi for i = 2,4 (13) 

gy=Wgj forj=1,3, 

then the map 

(14) 

m2 
F : R2 3 (t, x) + F(t, x) := -log %G2(t, x) E R (15) 

is a solution of the Liouville equation with the initial data 

F(0, .) = fi, (%F)(O, .) = A. (16) 

2. A solution of the Liouville equation satisfying (16) is given by (15), where gl , . . . , g4 
satisfy (13) and (14). 

Proof. 
(1) Suppose gl, g3 and g1, g3 satisfy (8) and (14). Hence there exists 

E SL(2, W 

such that gl = UFI + b& and g3 = cg”l + dg3. Such an exchange of functions 
corresponds to the Bianchi transformation [l] and does not change the form of solution 
(1%. If g2 and g4 satisfy (9) and (13), then the functions [l] 
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(2) 

(17) 

(18) 

satisfy (8) and (14). In what follows we assume that the general form of gl and g3 are 
given by (17) and (18). One can easily check that for G defined by (10) we have 

VxcR:G(O,x)=~exp(-if*(x)) >O. (19) 

By Lemma 1 we have that F given by (15) is well defined on R2 (F E P(W2)) and 
satisfies (16). 
We have shown that there exists F E Cm (W2) satisfying (16). By Lemma 2, F is of the 
form (15) for gl , . . . , gq E P’(R) satisfying (8) and (9). Now, we shall show (see [I]) 
that gl , . . , g4 can be a solution of (13) and (14) with u and w given by (11) and (12). 

We define 

K : R! 3 x --f K(x) := G(0, x) E R 

and 

A : R 3 X + h(x) := gi(x>gi(x) + gG(x)gi(x) E R. 

One has K’/# = -i f( and 

f2 = t&F)@, .I = $’ - Q;g2 + g&4)) = 9; - f&2 + g&4) 

= $2om; + &4) - K’) = f; + &x?; + 838:) 

which leads to 

;(f; + f2W = -&Y2 - g&4, (20) 

$(fl - f2N = g1g; + g3g;. (21) 

Suppose now that gt and g3 satisfy (13), and g2 and gq satisfy (14) for some U, w E CD= (R). 
Taking derivative of (20) yields 

$(fT + f[)‘K + ;(f2 + fi)K’ = -wK - fi. 

By analogy, we get from (21): 

(22) 

$(f2 - j$ K + +(A - fi’)K’ = UH + A. 

By direct calculations, we get 

(@F)(O, .) = ; f; + 4; - 2(u + w) 

(23) 

(24) 
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Since (a,2F)(O, .) = f/, we get 

I 2 
f;’ = 2 0 ; -2; (25) 

The map F satisfies the Liouville equation 0 F = -(m2/2) exp F on R2. By (24) and (25), 
for (0, x) E R2 we get 

m2 
= -,expfi. 

Since 

2K”/K = 2(u + tu) + 4A/K and (R’/N)2 = (1/4)(f,‘)” 

Eq. (26) leads to 

h 
- = -$[(fz - .0(f2 + f;) - m2expftl. K 

By (27) and (22) we get 

Similarly, (27) and (23) give 

m2 
u=~(f;+f*)'-~(f;+f2)'+16expf~. 0 

3. Homeomorphism of the space of initial data and the space of solutions 

We define the following mappings: 

A : C”W2 3 (fl, f2) - A(fl, f2) := lf E C”W, 

where u is given by (11). 

f? : P(R) 3 U - B(u) := (g2, g4) E C”(W)2, 

where g2 and g4 are defined by 

g; = ug2, g2(0) = 0, g;(O) = 1 and g; = ugq, 84(O) = 1, g;(O) = 0. 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

Remark 1. Maps g2 and g4 satisfy (9). 

C : C”W4 3 VI, .f2> gz>g4) - WI, f2, a, 84) := (a, 83) E C"Uf92, (32) 



K. Brggiel, V! Piechocki/Journal of Geometry and Physics 32 (2000) 252-268 359 

where gl and g3 are given by (17) and (I 8). 

27: w~)2 3 WI7 f2) - WI, f2> := (fl, f2. fl? f2) E coow”. (33) 

E: C”(R2) 3 G + E(G) := $G2 E C”(R2), (34) 

.F: C,“(ft2) 3 H + F(H) := -log H E C’=(R’). 

G : C”(R)4 3 (SI, g.?, g2, g4) - 6(gl, g3. gz. g4) := G E CX(R’), 

where G is de$ned by (10). 

(35) 

(36) 

‘FI := 8 0 s 0 (C x id2) o (id2 x D) o (id2 x B) o (id2 x A) o D), 

where id2 := idcx(Rjz. 

(37) 

Remark 2. 

7-l : C”(FQ2 3 (fl, f2) - ‘Fl(f~, f2> := $G2 E Cx(R2). 

By Lemma 1 we have the following corollary. 

Corollary 2. 

7-QC”(FQ2) 5 C,“@) 

Let 

z:=.Fo’FI. (38) 

By Proposition 1 we get the following corollary 

Corollary 3. Z : C”(kQ2 ---+ M is a bijection. 

Now comes the main theorem. 

Theorem 1. The mapping Z : C”(LQ2 - M dejned by (38) is a homeomorphism. 

Before we give the proof, let us give a few lemmas. 
We define some auxiliary maps and sets. 
For B E NX: 

pfi : R(/9)3 a + P&q(u):= p! EN 
n,B=,(j!)"Jllj! ’ 

B 
lg : R(B) 3 0. + ID(U) I= CC7j E N. 

j=l 
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For (A, p) E NX x W 

h 

R(h,/-L):= 
I 

LIEfV”+l:CjLZj=*,~~jZp , 

j=l j=O 1 

WA,, : R(h, /A) 3 a - W*,l*(a) := t! 
h! 

a0 n,h=l(j!)“jaj! 
E N 

c:=&.. 3 CB) E Xp_,R@i, pi), 

7(X, /A) := 

i 

a E IV 1 &t2j = I_L , 

j=l I 

N A+ : T@., F) 3 a + NL,,(u) := & Erv 
n” a.1 . , I I. 

Lemma 3. Let R G? 01 and R* 2 02 be some open sets, 

h E C”(Q), J E Coo(c32) and V(t, xl E 02 : I+ J(t, X) > o. 

Then 

1. v/3 E NX : abxph = 
( 

c Pb(a) fi(ajh)‘j 

) 

exph. 
aQw% j=l 

2. v~ErTJXviE{1,2): 

CEXf=l R(bi,Ui) k=’ 

Remark 3. One knows that 

k 

VNENVkctiJX: X E Nk : c Xj = N 
j=l 
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Thus 

Therefore, all sums in Lemma 3 arejinite. 

We skip a simple but lengthy proof of the Lemma 3. 

Lemma 4. Let (X, dx), (Z, dz) be some metric spaces and let (Y, pr) be a semimetric 
space. If X 2 K is compact and Q : K x Y + Z is a continuous map, then 

(Y E K(Yo, 6)) * P x 6 K : dz(Q(x, Y)> Qb-3 YO)) < 6). 

Proof of this lemma results from the proof of Maurin [3, Lemma X3.11. 

Proof of Theorem 1. 
SW 1. Let (fn)r=o and (g,)rzo be two sequences convergent in C?(R) to f and g, 

respectively. Then, 

Let us fix c~,, for (II, u) E NX x N (e.g., c~,, := inf{Z,,v E [w : Vn E N pLrs(fn) 5 C,,,}) 
and denote 

MI := max B 

K > Y 
ccry : Y 6 (0, 1,. . ., B) 

1 
3 

M2 := max B 

K > 
y Pa(y-B)(g) : Y E (0, 1. . ” > B) 3 

I 
k&p := max{MI, M2). 

Then, 

PcxB(f& - fg) 

< B B - cc > y=o y 
Pcw(fn)PU(B-y)(gn - g) 

+f: B 0 y=o Y 
Pnr (fn - f )Pa(B-v)(g) 

B 

5 MC@ C(P4p-,,(gfl - g) + Pq(fn - f )) e 0. n+s; 
v=o 
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which means that the mapping 

is continuous. 

Define h, := fn - f for n E N. We have ef - efn = ef(1 - ehn), thus 

We get 

LWCef - ef”> 5 10 C pa(p_y)(l - ehn), 
y=o 

where 

A2 := max B 

K > Y 
kY(ef) : Y E VI 1, . . . , Bl 

I 
E R 

For y = B we have 

pao(l - ehn) 5 ePaO(hn) - 1 - 0. n-03 

For Y > B > 0 denote ,6 - y := p + 1 (so p p 0), then 

(39) 

By Lemma 3 (see 1) we have 

3MoE(WV~E{O,l,...,P}VnEN: ’ 
0 

LL Pa(p-b)(eh”) < MO, 

therefore (39) gives 

V(cr,B)3NX xN:p,~(e~-eh)- n+oo 0. 

Since the map 

a : P(w) 3 f ---+ af E cyw) 

is continuous, the mapping A defined by (30) is continuous as the composition of continuous 
maps. 

Step2. Supposeu E Coo(R) and(z) E R*. Thereisoneandonlyonefunctiong E Cm(R) 
such that 

g” = ug, g(O) = a, g’(0) = b. (40) 
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Making substitution 

9 : R 3 s - P(s) := ( > g(s) E [w2 

g’(s) 

in (40) yields 

It= O l lp ( > uo ’ 
P(0) = ; 0 

(41) 

Let us denote the solution of (42) by w(.; U) to indicate its dependence on u E P(R), 
and in addition let 

A : C-(R) 3 u ---+ A(u) := E C"(W, TI~~~~([W)), 

B : Cco(R) 3 h - B(h) := E C"(W, i’142~~(LQ).) 

(In the sequel A(u)(s) := A(u(s)), B(h)(s) := B(h(s)).) 
For (a, B) E NX x N and 6 > 0 we denote 

&b(6) := {h E C”(R) : vy E {O, 1,. . .) /qp,,(h) < 6). 

We notice that 

V(u, h) E Cco(W x sao(l) : sup II A(u + h)(t) 111 1 + P,o(u>, 
tCK, 

Vh E Cm@) : SUP II B(h)(t) II= p,o(h). 
tcK, 

Now, let us fix u E Co3 (R) and (Y E RJ x, and let us denote 

MN := 4 + &O(U). 

Wechooset ~10, l/(1 + M,)[, N(r) := min{n E NX:nr 2 cx}andK(r) := [-tN(r), 
rN(t)]. Let N E NX is such that N 5 l/t 5 N + 1 and let d := l/(N + 2). Taking into 
account that 

Vt E (w 

t 

:P(t;u)= ; + 0 s A(u(s))‘P(s; u) ds, 

0 

we get 

Vt E [O, T] :I[ W(t; u + h) - wy(t; u) 11 

5ItIM4 sup IIly(s;u+h)-~(,;u)II 
~a,~1 

+ I r I SUP II WG)W’l(.c u) II . 
.SEK, 

(43) 



264 K. Brpgiel, WI Piechocki/.lournal of Geometry and Physics 32 (2000) 252-268 

Let us fix E > 0. Applying Lemma 4 to the map 

QU : R x C”(W) 3 (s, h) - &(s, h) := B(h(s))W(s; u) E R, 

and V, PY> = (Cm@), ~~0) gives 
360 > 0 Vh E s,o(bo) : sup ]I B(h(s))@(s; U) (I< &Qr). 

s&(s) 

Making use of this in (43) yields 

Vh E sao(60) : sup II *y(t; U + h) - @(t; u) II 
rwr1 

i TM,, sup II ‘J’(s; u + h) - p(s; U) II +E@(‘). 
.@O,r] 

Since t is such that 0 -C t c 1 - TM, we get 

VII E &-&do) : sup II *y(t; u + h) - P(t; u) 115 &fNCr). 
twJ,rl 

Applying previous considerations to the case t E [t, 251 and making use of 

Vh E &()(I&)) :(I @(s; z4 + h) - W(7; 2.4) 115 &P), 

one gets 

Vh E s,o(&)) : sup II ly(s; z4 + h) - 9(s; u) I[( ,dN(+‘. 
sC[s,2r] 

Repeated application of this procedure to [27, 371, . . . , [(N(t) - l)r, N(t)71 gives 

Vh E s,o(&) VN E {1,2, . . . , N(7)} : 

sup ]I W(s; u + h) - W(s; u) 111 ,dN(T)-CN-l). 
SE[(N-l)s,Ns] 

Similarreasoning applied to [-t,O], [-27, -71, . . . , [-N(r)t, -(N(7) - l)t] enables to 
write 

Vh E ~~~(6~) : sup II ‘P(s; u + h) - W(s; u) 115 E. 
s&(s) 

Since K, C K(7), we get 

Ve > 0 360 > 0 Vh E s,o(60) : r,&P(.; u + h) - ‘&y(.; u)) I E. (44) 

Making use of Lemma 4, Eq. (44) and the estimate 

Vh E s,o(l) :I] (a’W(t; u + h) - (W)(t; u) II 

I Mu II 90; u + h) - W(t; u) II + II Nh(t))P(t; u> II, 
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we get 

VE > 0 381 > Owl E s,1(61) : T-,1(*(.; u + h) - @(.; u)) 5 E. 

Now, let us consider the identity 

vfiENX: @(P(.; u + h) - !P(.; u)) 

[A(@'@ + h))as-‘-p(‘P(.; u + h) - u(.; u))] 

-qyy B(aph)i$-‘-W(.; u). 

p=o 
(45) 

We notice that there are derivatives of order 0, 1, . . . , j3 - 1 in the right-hand side of (45). 
Using Lemma 4 for the map 

Q; : lR x C”(W) 3 (s, h) - Q;(s, h) := B(i3Ph)~S-‘-P’P(.s; u) E R2, 

wherep=O,l,... , B - 1 and where (Y, pr) = (P(R), pap), we get (by induction) 

vg E N VE > 0 36p > 0 Vh E s,p(Gp) : r,p(@(.; u + h) - P(.; u)) 5 E. 

Since our considerations apply to any o E NX and any u E C”(W) we obtain that 

P(R) 3 u + tP(*; u) E C”(W, w2> (46) 

(where P (.; u) is a solution of (42)) is a continuous mapping. Taking into account that 

V@ E P(R, W2) V(a, /l) E NX x N : F-Q(@) > pqq(O1) 

where 

Q(t) =: @I 0) ( > @2(t) 

and solving (42) for 

(z)=(i) 
and 

(i)=(Y) 
gives the conclusion that B, defined by (31), is a continuous mapping. 

Step 3. It is clear that both mappings C and 27 are continuous. The continuity of E can be 
proved by analogy to the case of mapping A. The continuity of G results from the continuity 
of the mapping (c E I-1, 1)) 

oc : P(R) 3 f - w,(f) E C”(W2), 
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where 

w,(f) : lx2 3 (t, x) - f&-(f)@, x) := f(x + ct) E RI. 

The mapping ‘H is continuous since it is a composition of continuous mappings. 
Step 4. What is left is to prove that the mapping F is continuous. Suppose (G,),“_, is a 

sequence of elements of Cy ( R2) convergent to G E Cy ( R2). 
Denote H, := G, - G. The sequence (Hn)rZO converges to zero in C”(R2). Since 

VnEbJ:l+H,,/G>O,wehave 

logG,-logG=log%=log 1,: . ( > 
As Hn EZ 0 in C”(R2) we have 

Since Vx E] - l/2, cc[:] log(1 +x) 15 2 ] x 1, we conclude that VCY E lWx 3N, E N Vn > 
N,: 

Now, suppose I B )= fit + 82 > 0 and denote Jn := H,/ G for n E N. Since 

we have 

where 

Thus, we see that Jn Z 0 in Coo @X2). In particular we have 

(47) 

For #I E N2 let Dg := ((i, j) E N2 : 1 5 i + j 5 I,!?I}, dp := [Dbl. 

By (47) and Lemma 3 (see 2 and 3) we get that for B E N2, ]/?I 2 1 and (II E NX there 
exists a polynomial Qab E R[xt , . . . , Xds 1 such that Qays (0) = 0, deg Qap i IBI and 
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gN’YENVn>N’Y: 9@(B,,B2)(log(l + J,)) 

i QaB(qa(t.o)(Jn)> qa(o,l)(Jn), . . ., q,(1bl.o)(&,), swco.ls/,(&)). 
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Since J, + 0, it follows that 

V(cr, /I) E NX x W* VE > 0 3N,p E N Vn > Nap : quB(log(l + Jn)) < E. 

But G E C,“(R*) is an arbitrary function, therefore the mapping F is continuous. Finally, 
the mapping 1, defined by (38), is continuous as it is a composition of continuous mappings. 

Step 5. It is clear that the mappings 

K: : C”(R*) 3 F --+ K(F) := (F(0, .), (a, F)(O, .)) E C”(W)* 

and 

are continuous. Corollary 3 means that 

Z.S=idM and S. Z = idcxcR,z 

This completes the proof. 

4. Concluding remarks 

The homeomorphism 2-l : M -+ C”(W)* gives M the structure of a topological 
manifold modeled on the FrCchet space Coo(W)*. 

We hope that making use of the ideas of Kriegl and Michor [4] one can define an infinite 
dimensional differential geometry on M and work out some geometrical methods useful 
not only in the study of the Liouville field theory but also, after generalization, in the 
examination of such important for physicists nonlinear field theories as the general relativity 
or the Yang-Mills theories [5]. 
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